Physical Properties of Substrates as a Driver for Hermetia illucens (L.) (Diptera: Stratiomyidae) Larvae Growth

Autoren: Wael Yakti, Marcus Müller, Martina Klost, Inga Mewis, Dennis Dannehl, Christian Ulrichs

CUBES Circle | 03.2023 | DOI: 10.3390/insects14030266
Share on

The growth and nutritional profile of the black soldier fly larvae (BSFL) is usually investigated and compared when the larvae feed on substrates that differ in the chemical composition as well as physical properties. This study compares BSFL growth on substrates that differ primarily in physical properties. This was achieved by using various fibres in the substrates. In the first experiment, two substrates with 20% or 14% chicken feed were mixed with three fibres (cellulose, lignocellulose, or straw). In the second experiment, the growth of BSFL was compared with a 17% chicken feed substrate that additionally contained straw with different particle sizes. We show that the substrate texture properties values did not influence the BSFL growth, but the bulk density of the fibre component did. The substrate mixed with cellulose led to higher larvae growth over time in comparison to substrates with higher bulk density fibres. BSFL grown on the substrate mixed with cellulose reached their maximum weight in 6 days instead of 7. Neither the fibres nor the nutrient level changed the crude protein content of BSFL and the values ranged between 33.5% and 38.3%, but an interaction between the fibre and nutrient level was observed. The size of straw particles in the substrates influenced the BSFL growth and led to a 26.78% difference in Ca concentration, a 12.04% difference in Mg concentration, and a 35.34% difference in P concentration. Our findings indicate that the BSFL-rearing substrates can be optimised by changing the fibre component or its particle size. This can improve the survival rate, reduce the cultivation time needed to reach the maximum weight, and alter the chemical composition of BSFL.

Publikationsdatum: 03.2023
CUBES Circle

Verlag: MDPI AG

Quelle: Insects | 3 | 266 | 14

Publikationstyp: Journal-Artikel