UAV LiDAR Metrics for Monitoring Crop Height, Biomass and Nitrogen Uptake: A Case Study on a Winter Wheat Field Trial
Autoren: Christoph Hütt, Andreas Bolten, Hubert Hüging, Georg Bareth
GreenGrass | 12.2022 peer reviewed
Efficient monitoring of crop traits such as biomass and nitrogen uptake is essential for an optimal application of nitrogen fertilisers. However, currently available remote sensing approaches suffer from technical shortcomings, such as poor area efficiency, long postprocessing requirements and the inability to capture ground and canopy from a single acquisition. To overcome such shortcomings, LiDAR scanners mounted on unmanned aerial vehicles (UAV LiDAR) represent a promising sensor technology. To test the potential of this technology for crop monitoring, we used a RIEGL Mini-VUX-1 LiDAR scanner mounted on a DJI Matrice 600 pro UAV to acquire a point cloud from a winter wheat field trial. To analyse the UAV-derived LiDAR point cloud, we adopted LiDAR metrics, widely used for monitoring forests based on LiDAR data acquisition approaches. Of the 57 investigated UAV LiDAR metrics, the 95th percentile of the height of normalised LiDAR points was strongly correlated with manually measured crop heights (