Publikationen CUBES Circle

2023

Padmanabha, M., Kobelski, A., Hempel, A.-J., Streif, S. (2023). Modelling and optimal control of growth, energy, and resource dynamics of Hermetia illucens in mass production environment. Computers and Electronics in Agriculture, (206). https://doi.org/10.1016/j.compag.2023.107649

2022

Baganz, G. F. M., Junge, R., Portella, M. C., Goddek, S., Keesman, K. J., Baganz, D., Staaks, G., Shaw, C., Lohrberg, F., & Kloas, W. (2022). The aquaponic principle—It is all about coupling. Reviews in Aquaculture14(1), 252–264. https://doi.org/10.1111/raq.12596

Jones, J. J., Huang, S., Hedrich, R., Geilfus, C., & Roelfsema, M. R. G. (2022). The green light gap: A window of opportunity for optogenetic control of stomatal movement. New Phytologist, nph.18451. https://doi.org/10.1111/nph.18451

Khatib, M. A., Hempel, A.-J., Padmanabha, M., & Streif, S. (2022). Centralized optimization of resource routing in interconnected food production units with harvesting events*. IFAC-PapersOnLine55(7), 322–327. https://doi.org/10.1016/j.ifacol.2022.07.464

Shaw, C., Knopf, K., & Kloas, W. (2022). Fish Feeds in Aquaponics and Beyond: A Novel Concept to Evaluate Protein Sources in Diets for Circular Multitrophic Food Production Systems. Sustainability14(7). https://doi.org/10.3390/su14074064

Shaw, C., Knopf, K., & Kloas, W. (2022). Toward Feeds for Circular Multitrophic Food Production Systems: Holistically Evaluating Growth Performance and Nutrient Excretion of African Catfish Fed Fish Meal-Free Diets in Comparison to Nile Tilapia. Sustainability14(7). https://doi.org/10.3390/su142114252

Vollmer, A., Geilfus, C.-M., Nerlich, A., & Dannehl, D. (2022). Saving CO2 Emissions by Reusing Organic Growing Media from Hydroponic Tomato Production as a Source of Nutrients to Produce Ethiopian Kale (Brassica carinata). Sustainability14(18). https://doi.org/10.3390/su141811263

Wittmann, S., Jüttner, I., & Mempel, H. (2022). Simplified energy modeling to investigate the effect of lighting strategies on the energy efficiency of container indoor farms [Pdf]. 7 pages. https://doi.org/10.5288/DGG-PR-10-02-SW-2021

Yakti, W., Schulz, S., Marten, V., Mewis, I., Padmanabha, M., Hempel, A.-J., Kobelski, A., Streif, S., & Ulrichs, C. (2022). The Effect of Rearing Scale and Density on the Growth and Nutrient Composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) Larvae. Sustainability14(3), 1772. https://doi.org/10.3390/su14031772

2021

Dannehl, D., Kläring, H.-P., & Schmidt, U. (2021). Light-Mediated Reduction in Photosynthesis in Closed Greenhouses Can Be Compensated for by CO2 Enrichment in Tomato Production. Plants10(12). https://doi.org/10.3390/plants10122808

Dannehl, D., Schwend, T., Veit, D., & Schmidt, U. (2021). LED versus HPS Lighting: Effects on Water and Energy Consumption and Yield Quality in Lettuce Greenhouse Production. Sustainability13(15). https://doi.org/10.3390/su13158651

Dannehl, D., Schwend, T., Veit, D., & Schmidt, U. (2021). Increase of Yield, Lycopene, and Lutein Content in Tomatoes Grown Under Continuous PAR Spectrum LED Lighting. Frontiers in Plant Science12, 611236. https://doi.org/10.3389/fpls.2021.611236

Dietze, V., Feindt, P., Dietze, V., & Feindt, P. (2021). Institutioneller Rahmen für modulare bio-basierte Produktionssysteme im urbanen Raum. Hemmnisse und Förderfaktoren für die Entwicklung und Implementierung. https://doi.org/10.22004/AG.ECON.317060

Mempel, H., Jüttner, I., & Wittmann, S. (2021). The potentials of indoor farming for plant production. at - Automatisierungstechnik69, 287–296. https://doi.org/10.1515/auto-2020-0044

Meyer, P., Förster, N., Huyskens-Keil, S., Ulrichs, C., & Geilfus, C.-M. (2021). Phenolic compound abundance in Pak choi leaves is controlled by salinity and dependent on pH of the leaf apoplast. Plant-Environment Interactions2(1), 36–44. https://doi.org/10.1002/pei3.10039

Wittmann, S., Jüttner, I., Spence, M., & Mempel, H. (2021). Indoor Vertical Farming: Konsequente Weiterentwicklung des geschützten Anbaus. Jahrbuch Agrartechnik 202032, 2020. https://doi.org/10.24355/DBBS.084-202012111306-0

2020

Aschenbruck, T., Esterhuizen, W., Padmanabha, M., & Streif, S. (2020). Sustainability Analysis of Interconnected Food Production Systems via Theory of Barriers. IFAC-PapersOnLine53(2), 15765–15770. https://doi.org/10.1016/j.ifacol.2020.12.059

Büth, L., Juraschek, M., Cerdas, F., & Herrmann, C. (2020). Life cycle inventory modelling framework for symbiotic and distributed agricultural food production systems. Procedia CIRP90, 256–261. https://doi.org/10.1016/j.procir.2020.01.097

Herrmann, C., Büth, L., Juraschek, M., Abraham, T., & Schäfer, L. (2020). Application of biological transformation to foster positive urban production. Procedia CIRP90, 2–9. https://doi.org/10.1016/j.procir.2020.02.138

Mennenga, M., Büth, L., Cerdas, F., & Herrmann, C. (2020). Synthetic emergence as a functional unit for the environmental assessment of a system of systems. Procedia CIRP90, 393–398. https://doi.org/10.1016/j.procir.2020.01.062

Padmanabha, M., Beckenbach, L., & Streif, S. (2020). Model Predictive Control of a Food Production Unit: A Case Study for Lettuce Production. IFAC-PapersOnLine53(2), 15771–15776. https://doi.org/10.1016/j.ifacol.2020.12.204

Padmanabha, M., Kobelski, A., Hempel, A.-J., & Streif, S. (2020). A comprehensive dynamic growth and development model of Hermetia illucens larvae. PLOS ONE15(9), 1–25. https://doi.org/10.1371/journal.pone.023908

Wittmann, S., Jüttner, I., & Mempel, H. (2020). Indoor Farming Marjoram Production—Quality, Resource Efficiency, and Potential of Application. Agronomy10(11). https://doi.org/10.3390/agronomy10111769

2019

Padmanabha, M., & Streif, S. (2019). Design and Validation of a Low Cost Programmable Controlled Environment for Study and Production of Plants, Mushroom, and Insect Larvae. Applied Sciences9(23). https://doi.org/10.3390/app9235166